

 INDIAN SCHOOL AL WADI AL KABIR

 INDIAN SCHOOL AL WADI AL KABIR}

Pre Mid-Term Examination (2023-24)
Class:VIII
Sub: MATHEMATICS
Date:30-05-2023
Time: 1 hour

Max Marks: 30

Section A: Multiple Choice Question (Q. 1 to Q.6) of $\mathbf{1}$ mark each

1. In a quadrilateral ,three angles are $80^{\circ}, 122^{\circ}$ and 95°, then the measure of fourth angle is
A
B
C
D
2. The value of $\left(\frac{3}{5}\right)^{-3}$
A
A
B
C
3. The property use in $\frac{-3}{8}+\frac{9}{11}=\frac{9}{11}+\frac{-3}{8}$

A	Commutativity

B
C
D I
4. The polygon with no portion of diagonals lie in the exterior of the polygon

\mathbf{A}		B

D	Convex polygon

5. The multiplicative inverse of $\left(\frac{8}{11}\right)^{-5}$

| A | $\left(\frac{8}{11}\right)^{5}$ | B | | C | D | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Simplify : $\frac{-3}{2} \times \frac{5}{7}+\frac{-3}{2} \times \frac{2}{7}$ | | | | | | |
| A | B | $\frac{-3}{2}$ | C | | | |

Section B: Source based questions (Q. 7 to Q.11)of $\mathbf{1}$ mark each
7. If Neha wrote 0.0000587 on paper slip. The standard form of 0.0000587 is
A \quad B
B
C 5.87×10^{-5}
D
8. If $256500000=2.565 \times 10^{k}$, the value of k is
A
B 8
C
D
9. $0.000612=\mathrm{m} \times 10^{-4}$. The value of m is

A	B		C	6.12	D

10. The usual form of 9.3×10^{-3}
A 0.0093
B
C
D
11. Which of the following is standard form is correct for 385600 ?
A
B
C
D 3.856×10^{5}

Section C : Long Answer Questions (Q12 to Q.14)
12. $X=180^{\circ}-110^{\circ}=70^{\circ}(1 \mathrm{~m})$
$72^{0}+125^{0}+70^{0}+y=360^{\circ}$ ($1 / 2$ marks)
$Y=360-267^{\circ}=93^{\circ}(1 / 2)$
13. $\frac{-5}{8}, \frac{-2}{8}, 0$ and $\frac{7}{8}$ Number line (1m) each number (1/2 each)
14. $\frac{2}{7}$ and $\frac{3}{8} \quad \operatorname{Lcm}(7,8)=56(1 / 2) \frac{2 \times 8}{7 \times 8}=\frac{16}{56} \quad(1 / 2) \frac{3 \times 7}{8 \times 7}=\frac{21}{56}(1 / 2) \frac{16 \times 10}{56 \times 10}=\frac{160}{560} \quad(1 / 2)$ $\frac{21 \times 10}{56 \times 10}=\frac{210}{560}(1 / 2)$ Any 6 rational numbers between 0.2875 and $0.375(11 / 2)$

Section D : Case study (Q. 15 \& Q.16) of $\mathbf{5}$ marks each
15. (I)The length of Geometry box $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{5}\right)^{-1}$

$$
=2^{2}+3^{2}+5(1 \mathrm{~m})=4+9+5(1 / 2)=18 \mathrm{~cm}(1 / 2)
$$

(II) length of chalk $=\left[3^{6} \div 3^{4}\right]+3^{0}=3^{2}+3^{0}(1 \mathrm{~m})=9+1(1 / 2)=10 \mathrm{~cm}(1 / 2)$
(III) Simplify : $\quad \frac{3^{4} \times 7^{3}}{7^{2} \times 3^{3}}=7 \times 3(1 / 2)=21(1 / 2)$
16. Case Study-2
(I)the sum of interior angles of the pentagon $=(n-2) \times 180^{\circ}=3 \times 180^{\circ}(11 / 2)=540^{\circ}(1 / 2)$
(II) Number of diagonals $=n(n-3) / 2=5(5-3) / 2(11 / 2)=5(1 / 2)$
(III) Regular pentagon (1 mark)

